Predicting the Growth and Trend of COVID-19 Pandemic using Machine Learning and Cloud Computing

Dr Sukhpal Singh Gill
3 min readMay 12, 2020


  • Propose a novel scheme to predict the impact of COVID-19 Pandemic
  • Design a model based on Cloud Computing and Machine Learning for real-time prediction
  • Show improved prediction accuracy compared to baseline method
  • Highlight key future research directions and emerging trends


The outbreak of COVID-19 Coronavirus, namely SARS-CoV-2, has created a calamitous situation throughout the world. The cumulative incidence of COVID-19 is rapidly increasing day by day. Machine Learning (ML) and Cloud Computing can be deployed very effectively to track the disease, predict growth of the epidemic and design strategies and policy to manage its spread. This study applies an improved mathematical model to analyse and predict the growth of the epidemic. An ML-based improved model has been applied to predict the potential threat of COVID-19 in countries worldwide. We show that using iterative weighting for fitting Generalized Inverse Weibull distribution, a better fit can be obtained to develop a prediction framework. This has been deployed on a cloud computing platform for more accurate and real-time prediction of the growth behavior of the epidemic. A data driven approach with higher accuracy as here can be very useful for a proactive response from the government and citizens. Finally, we propose a set of research opportunities and setup grounds for further practical applications.

Figure 1: Proposed Cloud based AI framework for COVID-19 related analytics

Figure 2: Global heat-map for total predicted cases for different countries as on May 4, 2020 (countries with insufficient data for prediction are shown in white)


[Slides] [Online Publication Link] [Open Access Link][YouTube Video][medRxiv Preprint][Software Availability] [Interactive Graphs] [Dataset]


This work utilizes the Next Generation Technologies such a Cloud Computing, Artificial Intelligence, Machine Learning to forecasting the Growth and Trend of Covid-19 Pandemic on various key dimensions.

Multi-Peak Weibull distribution

The model uses multiple peak weibull model where each peak is modelled using a separate weibull distribution. This is summation of upto four weibull functions as described before but with same β and γ values to share the trend of the virus in a country.

Without multi-peak distribution (for UK):

With multi-peak distribution (for UK):


Shreshth Tuli, Shikhar Tuli, Rakesh Tuli and Sukhpal Singh Gill, “Predicting the Growth and Trend of COVID-19 Pandemic using Machine Learning and Cloud Computing” Internet of Things: Engineering Cyber Physical Human Systems, Elsevier, 2020.



Dr Sukhpal Singh Gill

Dr. Gill is Assistant Professor in Queen Mary University of London. He is Associate Editor in Elsevier IoT, Wiley ETT & IET Networks. W: